
101-SP0007

Collaborative Information Portal: MER and Beyond

Joan D. Walton Ronald L. Mak Leslie E. Keely
NASA/Ames Research Center USRA/RIACS NASA/Ames Research Center

joan.d.walton@nasa.gov rmak@mail.arc.nasa.gov leslie@email.arc.nasa.gov

Abstract

We describe the architecture and interface of the
Collaborative Information Portal (CIP), a system that
integrates operational and scientific information for
managing the 2003 Mars Exploration Rovers (MER)
mission. CIP displays schedules, notifies users of events
and the arrival of scientific data products, displays the
products, and facilitates team collaboration—all within
the context of user-personalized access and interfaces.
CIP is an Internet-enabled Java desktop application that
connects via secure web services to a middleware based
on Enterprise JavaBeans (EJB) and a back end
containing databases and meta-databases. The system is
fully integrated with the current JPL/MER secure flight
operations environment and has great potential for use
on future planetary missions. Future missions that
employ data repositories similar to those used on MER
will be able to use CIP with minimal or no
modifications. For non-MER type repositories, data
integration modules can be written and easily plugged
into the architecture without requiring changes to the
middleware and client application components. Finally,
the CIP architecture provides a basis upon which to
build in additional features and functionality beyond the
capabilities provided to MER.

1. Introduction

In June 2003, two state-of-the-art Mars rovers
launched from Cape Canaveral and started their seven-
month journey to the red planet. Once they touch down
on the Martian surface in January 2004, they will proceed
to deploy their suite of sophisticated scientific
instruments to collect geological and meteorological data
on the surrounding environment. The goal of the Mars
Exploration Rovers (MER) mission is to “follow the
water” in an effort to determine whether conditions on
Mars may have once been favorable for life [1].

Back on Earth, a team of about 250 scientists and
engineers will work around the clock to analyze the
collected data, determine a strategy and activities for the
next day and then carefully compose the command
sequences that will instruct the rovers in how to perform
their tasks. The scientists and engineers must work
closely together to balance the science objectives with the
engineering constraints so that the mission achieves its
goals safely and quickly [2]. To accomplish this
coordinated effort, they must adhere to a tightly

orchestrated schedule of meetings and processes. To keep
on time, it is critical that all team members are aware of
what is happening, know how much time they have to
complete their tasks, and can easily access the information
they need to do their jobs.

The Collaborative Information Portal (CIP) addresses
the MER mission need for situational awareness and data
access by providing a centralized, one-stop delivery
platform integrating science and engineering data from
several distributed heterogeneous data sources.

2. MER Mission Needs

The specific needs of the MER mission can be broken
down into the following categories:

2.1. Time Management

Knowing the current time would seem to be a simple
problem solved by installation of a wall clock. However,
time will not be so easy to handle on the MER mission,
as the mission will operate on Mars time. Since a Martian
day, or “sol,” is 24.66 hours long, the effect of working
on Mars time is that, for mission personnel, each work
day will start 40 minutes later than on the preceding day.
Over the course of the 90-day mission, the daily schedule
will gradually shift through all possible times of the
Earth day, and the mission personnel must follow along.
Thus, knowing what time to start and end work each day
becomes a non-trivial task.

2.2. Personnel Management

To execute the schedule, individual staff members
need to know when they are working, in what role, and
with whom. Once the staff has made it to work on time,
they then need to determine what is happening and where
they need to be. The large MER team is divided across
three floors of a high rise, each subdivided into rooms
designated for various purposes. Added to the time zone
challenge, communicating the current schedule to all the
team members is complicated by the distribution of their
physical locations.

2.3. Data Management

The staff on each MER-mission sol will work on three
overlapping shifts spanning the total Martian day.
Following the planned process, each shift must hand over

101-SP0007

to the following one as the day progresses from downlink
analysis to activity planning to rover navigation and
instrument deployment. When a scientist or engineer
comes on shift, he or she needs to know what was
planned and what actually happened: What was the final
plan at the end of the previous sol? Did the rover
successfully execute the plan? What just happened on the
previous shift? Next he or she needs to locate the data as
soon as it becomes available. This activity is complicated
by the immense data repository, security restrictions on
repository access, rigid structuring of the repository,
heterogeneous data products and reports generated by the
various specialized subsystems, and the lack of a unified
data product notification system.

3. Information Technology Challenges

A solution that addresses the MER mission
information-management needs is a unified system that
coordinates, facilitates and manages the information flow
and is accessible by all the mission staff. The key
information technology challenges involved in developing
such a system include:

ß Integrating heterogeneous data sources.
ß Managing large amounts of data.
ß Supporting the use of unstructured data.
ß Controlling access to data in a distributed and

possibly federated environment according to the
rights and privileges of particular users.

ß Facilitating collaboration.
ß Providing tools for browsing and analyzing a

range of data.
ß Presenting quality interfaces for the above tasks.
ß Doing all this in a familiar, easily-installed and

easily-manipulated environment.

Our goal in developing CIP (and related projects, an
emerging technology we call the Info-Core Information
Infrastructure) [3, 4] has been to create a generic
information infrastructure for integrating scientific and
engineering data.

4. CIP Architecture

The CIP system is composed of the following four
modules:

ß Client Application
ß Middleware
ß Data Management
ß Data Acquisition

The relationships between the CIP modules are
represented in Figure 1.

4.1. Client Application

Daily, the MER mission operations staff receives and
analyzes the data and status information resulting from

Figure 1. CIP architecture

101-SP0007

the rover’s activities of the previous day. Using this
analysis, scientists create secondary data files and reports
and develop the rover plan for the next day.

On a weekly basis, managers and team leads update
staffing and operations schedules and develop long-range
plans for the rover.

The mission operations staff works in shifts around
the clock on Mars time. Critical meetings produce
documents that must be handed off to the next shift. The
staff is keen to get the latest documents and data files,
which are stored on a central file server. Information about
those files (meta-data) is coded into the file name.

The goals of the CIP client application are to provide:

ß A central place to access mission information.
ß A Mars time clock.
ß A tool for navigating, searching, and previewing

mission data, plans, reports and schedules from
various perspectives.

ß Notification of new events.
ß Automated updates of various mission data files

and documents based on subscription.
ß Mission broadcast messages.
ß Flexibility as mission requirements change.

To meet these goals, the CIP client application
consists of several components combined into one

application. These include:

ß Clocks, enabling the user to view any time zone,
including the Mars time zones.

ß Science data navigator for browsing, searching
and previewing science data.

ß Reports navigator for accessing and previewing
mission reports.

ß Schedule viewer for displaying operations and
staffing schedules in various time scales including
Mars time.

ß Event Horizon for tracking and counting down to
important meetings and other events.

ß Broadcast announcements for distributing
important messages to mission staff.

ß Convert time, a tool for converting between time
zones.

Together these components operate as a cohesive unit,
providing situational awareness to the MER mission
staff. Figure 2 shows example user interfaces for these
components.

The CIP client is a Java application that runs on
common scientific user platforms including Sun/Solaris,
PC/Windows, and Mac/OS X. This design provides
better interactivity than a server-side implementation and
makes use of the client host resources. To maintain a

Figure 2. Client application user interfaces.

101-SP0007

small resource footprint, it is demand driven and only
loads the data the user requests.

4.2. Middleware

No one should notice the middleware when it is doing
its job right. Ideally, a user at his or her workstation
would believe that the CIP client application accesses data
on the server directly and exclusively—he or she should
not be aware that, in fact, the middleware is busily
fetching data from the backend data stores, caching
frequently accessed data, routing asynchronous messages,
and serving multiple users simultaneously and securely.

We designed the middleware to meet several key
requirements. It was required to:

ß Be reliable, scalable, maintainable, and secure.
ß Be platform-independent.
ß Be built from commercial off-the-shelf (COTS)

software.
ß Support hundreds of simultaneous users.
ß Adhere to industry standards.

Certain mission characteristics also influenced the
middleware design:

ß Data is downloaded periodically from Mars, with
few modifications between downloads. Therefore,
the data is mostly read-only.

ß Users tend to want to see the new data as soon as
it is downloaded, so access frequencies will have
large spikes, and the access patterns will have
small working sets.

ß Compared to e-commerce applications, there are a

relatively low number of transactions, but each
transaction may involve a relatively large amount
of data.

ß The mission firewall permits HTTP, but all
transactions must be encrypted.

ß The CIP client application is written in Java, but
some other clients are written in C++.

To satisfy its requirements and to support the mission
characteristics, we designed the middleware using
industry-standard Java 2 Enterprise Edition (J2EE)
technologies [5]. Enterprise JavaBeans (EJBs) provide
reliability, scalability, maintainability, and platform-
independence [6]. The Java Message Service (JMS)
provides asynchronous messaging [7].

We used another industry standard, web services [8],
for communications between the middleware and the
client applications. Web services are language-
independent, allowing us to support both Java and C++
clients. Web services use an XML-based protocol known
as SOAP [9]. By transmitting SOAP over HTTPS, we
have secure, encrypted communications.

To support the CIP client application and the other
clients, the middleware provides a number of services,
including:

ß User management services: User authentication
and authorization, session management, and user
preferences.

ß Data access services: Fetch mission data,
metadata, and schedules from the backend
databases.

ß Time services: Supply and convert times in
various time zones, including current Mars times.

Figure 3. CIP middleware architecture

101-SP0007

ß File and directory services: Upload and
download mission data and images to and from
the backend file stores.

ß Message services: Asynchronous broadcast
announcements and event notification.

Figure 3 shows the middleware architecture.

Each middleware service has a remote stateless session
EJB that is the service provider. The application server
automatically manages simultaneous calls from multiple
clients by maintaining instance pools of these stateless
session beans.

To allow the clients to access the middleware via web
services, each service provider has a SOAP processor to
handle incoming calls. On the client side, each client

application has a web services client stub. This stub
contains local proxies for the remote APIs of the
middleware service providers. Each call to a proxy is
automatically converted to a remote call (via SOAP over
HTTPS) to the corresponding service provider API.

The data access services use local stateful session
EJBs to cache frequently accessed data. This is shown in
Figure 4. The application server manages this cache, and
least recently used data is automatically removed from the
cache whenever the amount of free memory becomes low.
The cache registry, a Java hash table, keeps track of
what’s currently in the cache. Accessing cached data is
much faster than fetching it from the remote backend
databases via Java Database Connectivity (JDBC) calls
[10].

The middleware supports two types of asynchronous

Figure 4. Cached data.

Figure 5. Message broadcasting

101-SP0007

messaging within CIP:

ß Broadcast announcements that are sent by one user
to other users.

ß Event notifications that are sent by the
middleware to notify clients that certain events
have just occurred, such as a download of new
data.

For asynchronous messaging, the middleware uses
another J2EE technology, the Java Message Service
(JMS). JMS topics enable sending messages to multiple
clients. Clients subscribe to the topics in which they are
interested. A message producer sends a message to a
topic, and JMS delivers it to the interested message
consumers.

Figure 5 shows message broadcasting. The
middleware archives all broadcast messages. The Message
Archivist, a message-driven EJB, subscribes to the
broadcast messages topic. Therefore, it also receives the
broadcast messages, which it then enters into the message
archive database.

Figure 6 shows how clients can subscribe to
notification topics that correspond to the types of data
whose downloads they wish to be notified. A file monitor
that runs in the Data Acquisition Module sends a
notification message to the appropriate topic. The
notification is then forwarded to the interested clients.

The CIP middleware was developed with and is
comprised of COTS software. We used Borland’s
JBuilder 9 Enterprise Edition [11] to develop and debug
the Java code, and Apache’s open source ANT utility [12]
to do the system builds. The Java code adheres to the
J2EE standards, including its EJB and JMS interfaces. At
runtime, the J2EE application server is BEA WebLogic
8.1 [13]. For security, we installed Verisign certificates
[14] into the application server. The WebLogic package

includes utilities for generating the web services Java
client stubs. To generate the C++ client stubs, we used
the open source gSOAP package [15].

4.3. Data Management

The CIP Data Management System is a combination
of custom software, a COTS relational database
management system (RDBMS) produced by Oracle
Corporation (Oracle 9i Enterprise Edition [16]), and a file
system. The primary component of the CIP Data
Management System is a Product Meta-Database

The Product Met-Database schema captures a
hierarchical, relational view of the mission data based on
activity along with descriptive information about
elements in the hierarchy and pointers to related data
products. The functions of the meta-database are:

ß Hold sufficient information about the mission
data products to support queries on what data
products are available, how and when they were
created, what system produced them, what their
status is and what key parameters are associated
with them.

ß Perform searches with optimal speed
ß Handle new data and updates appropriately

4.4. Data Acquisition

The CIP Data Acquisition module is comprised of
Monitor and Loader software. The function of the CIP
Monitor is to watch the MER Mission Data Systems and
determine when new data have arrived. The function of
the CIP Loader is to extract information from specific
MER sources and insert it into the Product Meta-
Database. The components of the CIP Loader are:

Figure 6. Event notification

101-SP0007
ß Parser Modules
ß Database Loader

The Parser Modules read specific MER sources and
retrieve relevant information for storage in the Product
Meta-Database. The Parser Modules format this
information into input files for the Database Loader.
There may be multiple Parser Modules depending on how
many different types of sources from which the CIP needs
to pull information. The Parser Modules need to interact
with the appropriate MER data systems in order to
retrieve the relevant files or information.

The Database Loader takes the input files generated by
the Parser Modules and loads their content into the meta-
database. The Database Loader is written in Java. It
requires the Oracle SQL*Loader to update the Product
Meta-Database.

5. Usage Scenarios

As of the writing of this paper, CIP is starting to be
used in the MER operational readiness tests (ORTs) in
preparation for supporting the actual mission in 2004.
CIP has become part of the Mission standard operating
procedures for performing some key tasks. When
personnel come on shift, they are expected to use CIP to
check for announcements, review the daily schedule, and
retrieve the latest data products and reports. During the
course of the day, the schedule viewer and event horizon
in CIP are used on individual workstations and shown on
large screen displays for the purpose of alerting personnel
to the start and end of key events. As the scientists and
engineers collaborate with each other, they use CIP to
retrieve key data products and reports and export them to
their workstations or to collaborative workspaces, such as
the MERBoard [17] where they are discussed, marked up
and incorporated into follow-on reports.

6. Future Missions

CIP is based on a general framework for information
management systems and as such can be adapted to
support other missions beyond MER. The scale of the
adaptation effort is dependent on how divergent the future
missions goals and data management needs are from those
of MER. Often, data repositories vary in structure and
format from one mission to another. To adapt to a
mission that uses a different style repository from MER,
CIP would require a new Data Acquisition module that
interfaces with the repository and extracts the key meta-
data needed to display and search for data products. In
addition, the module might need to employ a different
strategy to monitoring the repository for changes. Once
the meta-data are stored in the Data Management module,
the Middleware and Client Application can operate with
the new repository without modifications.

On the client side, we anticipate that future missions
will have similar needs for schedule management and data

retrieval, although the time management issues will not
be as imperative for missions operating on standard Earth
time. CIP was developed from the ground up in just
under two years, so many of the functions and features
that were initially planned had to be set aside in order to
meet the challenging schedule. Some examples include
advanced data product search capabilities and data mining;
automated generation of report summaries; collaborative
features such as shared work spaces and information
exchange mechanisms; sophisticated notification
strategies, including email and pagers; interfaces to
complex staff scheduling systems; to name a few. The
CIP framework provides a foundation upon which to
build all this and more.

7. Acknowledgments

The authors would like to thank the CIP development
team for their hard work in making this exciting project a
reality and the JPL MER mission management and staff
for accepting us onto the mission and facilitating the
integration of CIP into the MER ground data systems. In
addition we acknowledge NASA’s Computing,
Information and Communications Technology Program
(CICT) program for funding of this work.

8. References

[1] Jet Propulsion Laboratory, Looking for Signs of Past
Water on Mars, http://mars.jpl.nasa.gov/mer/science/ , 2003.

[2] Jet Propulsion Laboratory, Mission Timeline: Surface
Operations,
http://mars.jpl.nasa.gov/mer/mission/tl_surface.html , 2003.

[3] J. D. Walton, R. E. Filman, C. Knight, D. J. Korsmeyer,
and D. D. Lee, “D3: A Collaborative Infrastructure for
Aerospace Design,” Workshop on Advanced Collaborative
Environments, San Francisco, August 2001.

[4] J. D. Walton, R. E. Filman, and D. J. Korsmeyer, The
Evolution of the DARWIN System,” 2000 ACM Symposium
on Applied Computing, Como, Italy, March 2000, pp.
971–977.

[5] B. Shannon, Java™ 2 Platform, Enterprise Edition (J2EE™)
Specification, Version 1.3, Sun Microsystems, August 2001.

[6] L. G. DeMichiel, L. Ü. Yalçinalp, S. Krishnan,
Enterprise JavaBeans™ Specification, Version 2.0, Sun
Microsystems, August 2001.

[7] Sun Microsystems, Inc., Java Message Service API,
http://java.sun.com/products/jms/ , 2003.

[8] Sun Microsystems, Inc., Web Services,
http://www.sun.com/learnabout/webservices/ , 2003.

[9] D. Box, D. Ehnebuske, G. Kakivaya, et al., “Simple
Object Access Protocol (SOAP) 1.1,” W3C Note, May 2000

101-SP0007

[10] Sun Microsystems, Inc., JDBC™ Data Access API,
http://java.sun.com/products/jdbc/ , 2003.

[1 1] B o r l a n d , U S A , JBuilder,
http://www.borland.com/jbuilder/ , 2003.

[12] Apache Org., The Apache ANT Project.
http://ant.apache.org/ , 2003.

[13] BEA Systems, BEA WebLogic Server,
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/co
ntent/products/server/ , 2003.

[14] VeriSign, VeriSign, http://www.verisign.com/ , 2003.

[15] R. A. van Engelen and K. A. Gallivan, “The gSOAP
Toolkit for Web Services and Peer-To-Peer Computing
Networks,” Proceedings of IEEE CCGrid Conference, 2002.

[16] Oracle Corp., Orac le 9 i Da tabase ,
http://www.oracle.com/ip/deploy/database/oracle9i/ , 2003.

[17] D. Jong, IBM's BlueBoard Technology on the Red
Planet,
http://www.space.com/businesstechnology/technology/merb
oard_rover_020821.html , August 2002.

